function explicit_sin % Solves the heat equation using explicit method for various M values % diff(u,x,x) = diff(u,t) + f(x,t) for xL < x < xr, 0 < t < tmax % where % u = 0 at x=xL,xR and u = g(x) at t = 0 % g(x)=sin(2*pi*x) and f(x,t)=0 % clear all previous variables and plots clear * clf % set parameters N=20; M=5; tmax=0.1; xL=0; xR=1; % pick time points for plot (by picking the index) itotal=3; it(1)=2; it(2)=(M+1)/2; it(3)=(M+1); fprintf('\n Solution Computed with N = %3.0f and M = %4.0f\n\n',N,M) % generate the points along the x-axis, x(1)=xL and x(N+2)=xR x=linspace(xL,xR,N+2); h=x(2)-x(1); % calculate explicit solution using various M values for im=1:3 % generate the points along the t-axis, t(1)=0 and t(M+1)=tmax t=linspace(0,tmax,M+1); k=t(2)-t(1); lamda=k/h^2; fprintf('\n Lamda = %5.2e\n\n',lamda) if im==1 lamda1=lamda; ue=explicit2(x,t,N+2,M+1,h,k,lamda); tt(1)=t(it(1)); tt(2)=t(it(2)); tt(3)=t(it(3)); elseif im==2 lamda2=lamda; uee=explicit2(x,t,N+2,M+1,h,k,lamda); else im==3 lamda3=lamda; ueee=explicit2(x,t,N+2,M+1,h,k,lamda); end; M=2*M; end; xx=linspace(xL,xR,100); % plot results %set(gcf,'Position', [662 315 560 725]); plotsize(560,725) for itt=1:itotal % plot numerical solutions subplot(3,1,4-itt) hold on plot(x,ue(:,it(itt)),'-sr') plot(x,uee(:,2*it(itt)-1),'-ob') plot(x,ueee(:,4*it(itt)-3),'--','Color',[0.5 0 0.5],'Linewidth',1) % plot exact solution u=exp(-4*pi*pi*tt(itt))*sin(2*pi*xx); plot(xx,u,'-k') % define axes used in plot xlabel('x-axis','FontSize',14,'FontWeight','bold') ylabel('Solution','FontSize',14,'FontWeight','bold') % have MATLAB use certain plot options (all are optional) set(gca,'FontSize',14); box on say=['Time = ', num2str(tt(itt))]; if itt==1 yt=0.4; axis([0 1 -0.5 0.5]); legend([' M = 5 (\lambda = ', num2str(lamda1,'%3.1f'),')'],[' M = 10 (\lambda = ', num2str(lamda2,'%3.1f'),')'],[' M = 20 (\lambda = ', num2str(lamda3,'%3.1f'),')'],' Exact',3); set(findobj(gcf,'tag','legend'),'FontSize',12,'FontWeight','bold'); elseif itt==2 yt=0.4; axis([0 1 -0.5 0.5]); else yt=50; axis([0 1 -60 60]); set(gca,'ytick',[-60 -30 0 30 60]); end text(0.75,yt,say,'FontSize',14,'FontWeight','bold') hold off end; say=['Heat Equation: exact vs explicit method when u(x,0)=sin(2\pix)']; title(say,'FontSize',14,'FontWeight','bold') % explicit method function UE=explicit2(x,t,N,M,h,k,lamda) UE=zeros(N,M); for i=1:N UE(i,1)=g(x(i)); end; for j=2:M for i=2:N-1 UE(i,j)=lamda*UE(i+1,j-1)+(1-2*lamda)*UE(i,j-1)+lamda*UE(i-1,j-1)-k*f(x(i),t(j-1)); end; end; % subfunction f(x,t) function q=f(x,t) q=0; % subfunction g(x) function q=g(x) q=sin(2*pi*x); % tridiagonal solver function y = tridiag( a, b, c, f ) N = length(f); v = zeros(1,N); y = v; w = a(1); y(1) = f(1)/w; for i=2:N v(i-1) = c(i-1)/w; w = a(i) - b(i)*v(i-1); y(i) = ( f(i) - b(i)*y(i-1) )/w; end; for j=N-1:-1:1 y(j) = y(j) - v(j)*y(j+1); end; % subfunction plotsize function plotsize(width,height) siz=get(0,'ScreenSize'); bottom=max(siz(4)-height-95,1); set(gcf,'Position', [2 bottom width height]);